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CHAPTER 8
Portfolio Credit Risk

I n this chapter, we extend the study of credit risk to portfolios containing
several credit-risky securities. We begin by introducing the most important

additional concept we need in this context, default correlation, and then
discuss approaches to measuring portfolio credit risk.

A portfolio of credit-risky securities may contain bonds, commercial
paper, off-balance-sheet exposures such as guarantees, as well as positions
in credit derivatives such as credit default swaps (CDS). A typical portfolio
may contain many different obligors, but may also contain exposures to
different parts of one obligor’s capital structure, such as preferred shares
and senior debt. All of these distinctions can be of great importance in
accurately measuring portfolio credit risk, even if the models we present
here abstract from many of them.

In this chapter, we focus on two approaches to measuring portfolio
credit risk. The first employs the factor model developed in Chapter 6, the
key feature of which is latent factors with normally distributed returns.
Conditional on the values taken on by that set of factors, defaults are in-
dependent. There is a single future time horizon for the analysis. We will
specialize the model even further to include only default events, and not
credit migration, and only a single factor. In the CreditMetrics approach,
this model is used to compute the distribution of credit migrations as well as
default. One could therefore label the approach described in this chapter as
“default-mode CreditMetrics.” An advantage of this model is that factors
can be related to real-world phenomena, such as equity prices, providing an
empirical anchor for the model. The model is also tractable.

The second approach we take in this chapter uses simulation, together
with the intensity models developed in Chapters 6 and 7, to measure credit
portfolio risk. We sketch the theoretical basis for the approach, which em-
ploys a mathematical structure called a copula, and offer a simple example.
Chapter 9 provides a full-blown application of the approach to valuation
and risk measurement of securitizations.

265
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8.1 DEFAULT CORRELATION

In modeling a single credit-risky position, the elements of risk and return
that we can take into consideration are

� The probability of default
� The loss given default (LGD), the complement of the value of recovery

in the event of default
� The probability and severity of rating migration (nondefault credit de-

terioration)
� Spread risk, the risk of changes in market spreads for a given rating
� For distressed debt, the possibility of restructuring the firm’s debt, either

by negotiation among the owners of the firm and of its liabilities, or
through the bankruptcy process. Restructuring opens the possibility of
losses to owners of particular classes of debt as a result of a negotiated
settlement or a judicial ruling

To understand credit portfolio risk, we introduce the additional concept
of default correlation, which drives the likelihood of having multiple defaults
in a portfolio of debt issued by several obligors. To focus on the issue of
default correlation, we’ll take default probabilities and recovery rates as
given and ignore the other sources of return just listed.

8.1.1 Def in ing Defaul t Correlat ion

The simplest framework for understanding default correlation is to think of

� Two firms (or countries, if we have positions in sovereign debt)
� With probabilities of default (or restructuring) π1 and π2
� Over some time horizon τ
� And a joint default probability—the probability that both default over

τ—equal to π12

This can be thought of as the distribution of the product of two
Bernoulli-distributed random variables xi , with four possible outcomes. We
must, as in the single-firm case, be careful to define the Bernoulli trials as
default or solvency over a specific time interval τ . In a portfolio credit model,
that time interval is the same for all the credits in the book.

We have a new parameter π12 in addition to the single-name default
probabilities. And it is a genuinely new parameter, a primitive: It is what it
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is, and isn’t computed from π1 and π2, unless we specify it by positing that
defaults are independent.

Since the value 1 corresponds to the occurrence of default, the product
of the two Bernoulli variables equals 0 for three of the outcomes—those
included in the event that at most one firm defaults—and 1 for the joint
default event:

Outcome x1 x2 x1x2 Probability

No default 0 0 0 1 − π1 − π2 + π12

Firm 1 only defaults 1 0 0 π1 − π12

Firm 2 only defaults 0 1 0 π2 − π12

Both firms default 1 1 1 π12

These are proper outcomes; they are distinct, and their probabilities add
up to 1. The probability of the event that at least one firm defaults can be
found as either 1 minus the probability of the first outcome, or the sum of
the probabilities of the last three outcomes.

P
[
Firm 1 or Firm 2 or both default

] = π1 + π2 − π12

We can compute the moments of the Bernoulli variates:

� The means of the two Bernoulli-distributed default processes are

E [xi ] = πi , i = 1, 2

� The expected value of the product—representing joint default—is
E [x1x2] = π12.

� The variances are

E [xi ]2 − (E [xi ])2 = πi (1 − πi ) i = 1, 2

� The covariance is

E [x1x2] − E [x1] E [x2] = π12 − π1π2

� The default correlation, finally, is

ρ12 = π12 − π1π2√
π1(1 − π1)

√
π2(1 − π2)

(8.1)
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We can treat the default correlation, rather than joint default probability,
as the primitive parameter and use it to find the joint default probability:

π12 = ρ12

√
π1(1 − π1)

√
π2(1 − π2) + π1π2

The joint default probability if the two default events are independent
is π12 = π1π2, and the default correlation is ρ12 = 0. If ρ12 �= 0, there is a
linear relationship between the probability of joint default and the default
correlation: The larger the “excess” of π12 over the joint default probability
under independence, π1π2, the higher the correlation. Once we specify or
estimate the πi , we can nail down the joint default probability either directly
or by specifying the default correlation. Most models, including those set
out in this chapter, specify a default correlation rather than a joint default
probability.

Example 8.1 (Default Correlation) Consider a pair of credits, one BBB+
and the other BBB-rated, with π1 = 0.0025 and π2 = 0.0125. If the defaults
are uncorrelated, then π12 = 0.000031, less than a third of a basis point. If,
however, the default correlation is 5 percent, then π12 = 0.000309, nearly
10 times as great, and at 3 basis points, no longer negligible.

In a portfolio containing more than two credits, we have more than
one joint default probability and default correlation. And, in contrast to the
two-credit portfolio, we cannot specify the full distribution of defaults based
just on the default probabilities and the pairwise correlations or joint default
probabilities. To specify all the possible outcomes in a three-credit portfolio,
we need the three single-default probabilities, the three two-default proba-
bilities, and the no-default and three-default probabilities, a total of eight.
But we have only seven conditions: the three single-default probabilities,
three pairwise correlations, and the constraint that all the probabilities add
up to unity. It’s the latter constraint that ties out the probabilities when there
are only two credits. With a number of credits n > 2, we have 2n different
events, but only n + 1 + n(n−1)

2 conditions:

n 2n n + 1 + n(n−1)
2

2 4 4
3 8 7
4 16 11

10 1,024 56

We can’t therefore build an entire credit portfolio model solely on de-
fault correlations. But doing so is a pragmatic alternative to estimating or
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stipulating, say, the 1,024 probabilities required to fully specify the distri-
bution of a portfolio of 10 credits.

Even if all the requisite parameters could be identified, the number would
be quite large, since we would have to define a potentially large number of
pairwise correlations. If there are N credits in the portfolio, we need to
define N default probabilities and N recovery rates. In addition, we require
N(N − 1) pairwise correlations. In modeling credit risk, we often set all of
the pairwise correlations equal to a single parameter. But that parameter
must then be non-negative, in order to avoid correlation matrices that are
not positive-definite and results that make no sense: Not all the firms’ event
of default can be negatively correlated with one another.

Example 8.2 Consider a portfolio containing five positions:

1. A five-year senior secured bond issued by Ford Motor Company
2. A five-year subordinate unsecured bond issued by Ford Motor Company
3. Long protection in a five-year CDS on Ford Motor Credit Company
4. A five-year senior bond issued by General Motors Company
5. A 10-year syndicated term loan to Starwood Resorts

If we set a horizon for measuring credit risk of τ = 1 year, we need to
have four default probabilities and 12 pairwise default correlations, since
there are only four distinct corporate entities represented in the portfolio.
However, since the two Ford Motor Company bonds are at two different
places in the capital structure, they will have two different recovery rates.

This example has omitted certain types of positions that will certainly
often occur in real-world portfolios. Some of their features don’t fit well into
the portfolio credit risk framework we are developing:

� Guarantees, revolving credit agreements, and other contingent liabilities
behave much like credit options.

� CDS basis trades are not essentially market- or credit-risk–oriented,
although both market and credit risk play a very important role in their
profitability. Rather, they may be driven by “technical factors,” that
is, transitory disruptions in the typical positioning of various market
participants.

A dramatic example, which we discuss in Chapter 13, occurred
during the subprime crisis. The CDS basis widened sharply as a result
of the dire lack of funding liquidity.

� Convertible bonds are both market- and credit-risk oriented. Equity and
equity vega risk can be as important in convertible bond portfolios as
credit risk.
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8.1.2 The Order of Magnitude of Defaul t
Correlat ion

For most companies that issue debt, most of the time, default is a relatively
rare event. This has two important implications:

1. Default correlation is hard to measure or estimate using historical de-
fault data. Most studies have arrived at one-year correlations on the
order of 0.05. However, estimated correlations vary widely for differ-
ent time periods, industry groups, and domiciles, and are often negative.

2. Default correlations are small in magnitude.

In other contexts, for example, thinking about whether a regression
result indicates that a particular explanatory value is important, we get used
to thinking of, say, 0.05 as a “small” or insignificant correlation and 0.5 as
a large or significant one. The situation is different for default correlations
because probabilities of default tend to be small—on the order of 1 percent—
for all but the handful of CCC and below firms. The probability of any
particular pair of credits defaulting is therefore also small, so an “optically”
small correlation can have a large impact, as we saw in Example 8.1.

8.2 CREDIT PORTFOLIO RISK MEASUREMENT

To measure credit portfolio risk, we need to model default, default correla-
tion, and loss given default. In more elaborate models, we can also include
ratings migration. We restrict ourselves here to default mode. But in practice,
and in such commercial models as Moody’s KMV and CreditMetrics, mod-
els operate in migration mode; that is, credit migrations as well as default
can occur.

8.2.1 Granular i ty and Portfo l io Credit
Value-at -R isk

Portfolio credit VaR is defined similarly to the VaR of a single credit. It is a
quantile of the credit loss, minus the expected loss of the portfolio.

Default correlation has a tremendous impact on portfolio risk. But it
affects the volatility and extreme quantiles of loss rather than the expected
loss. If default correlation in a portfolio of credits is equal to 1, then the
portfolio behaves as if it consisted of just one credit. No credit diversification
is achieved. If default correlation is equal to 0, then the number of defaults in
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the portfolio is a binomially distributed random variable. Significant credit
diversification may be achieved.

To see how this works, let’s look at diversified and undiversified portfo-
lios, at the two extremes of default correlation, 0 and 1. Imagine a portfolio
of n credits, each with a default probability of π percent and a recovery
rate of zero percent. Let the total value of the portfolio be $1,000,000,000.
We will set n to different values, thus dividing the portfolio into larger or
smaller individual positions. If n = 50, say, each position has a value of
$20,000,000. Next, assume each credit is in the same place in the capital
structure and that the recovery rate is zero; in the event of default, the
position is wiped out. We’ll assume each position is an obligation of a dif-
ferent obligor; if two positions were debts of the same obligor, they would
be equivalent to one large position. We can either ignore the time value of
money, which won’t play a role in the example, or think of all of these
quantities as future values.

Now we’ll set the default correlation to either 0 or 1.

� If the default correlation is equal to 1, then either the entire portfolio
defaults, with a probability of π , or none of the portfolio defaults. In
other words, with a default correlation of 1, regardless of the value of
n, the portfolio behaves as though n = 1.

We can therefore continue the analysis by assuming all of the
portfolio is invested in one credit. The expected loss is equal to
π×1,000,000,000. But with only one credit, there are only the two
all-or-nothing outcomes. The credit loss is equal to 0 with probability
1 − π . The default correlation doesn’t matter.

The extreme loss given default is equal to $1,000,000,000, since
we’ve assumed recovery is zero. If π is greater than the confidence level
of the credit VaR, then the VaR is equal to the entire $1,000,000,000,
less the expected loss. If π is less than the confidence level, then the VaR
is less than zero, because we always subtract the expected from the ex-
treme loss. If, for example, the default probability is π = 0.02, the credit
VaR at a confidence level of 95 percent is negative (i.e., a gain), since
there is a 98 percent probability that the credit loss in the portfolio will
be zero. Subtracting from that the expected loss of π×1,000,000,000 =
20,000,000 gives us a VaR of −$20,000,000. The credit VaR in the case
of a single credit with binary risk is well-defined and can be computed,
but not terribly informative.

� If the default correlation is equal to 0, the number of defaults is
binomially distributed with parameters n and π . We then have many
intermediate outcomes between the all-or-nothing extremes.
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F IGURE 8.1 Distribution of Defaults in an Uncorrelated Credit Portfolio
Cumulative probability distribution function of the number of defaults in a
portfolio of 50 independent credits with a default probability of 2 percent.

Suppose there are 50 credits in the portfolio, so each position has
a future value, if it doesn’t default, of $20,000,000. The expected loss
is the same as with one credit: π×1,000,000,000. But now the extreme
outcomes are less extreme. Suppose again that π = 0.02. The number
of defaults is then binomially distributed with parameters 50 and 0.02.
The 95th percentile of the number of defaults is 3, as seen in Figure 8.1;
the probability of two defaults or less is 0.92 and the probability of
three defaults or less is 0.98. With three defaults, the credit loss is
$60,000,000. Subtracting the expected loss of $20,000,000, which
is the same as for the single-credit portfolio, we get a credit VaR of
$40,000,000.

As we continue to increase the number of positions and decrease
their size, keeping the total value of the portfolio constant, we decrease
the variance of portfolio values. For n =1,000, the 95th percentile of
defaults is 28, and the 95th percentile of credit loss is $28,000,000, so
the credit VaR is $8,000,000.

We summarize the results for n = 1, 50, 1,000, for default probabilities
π = 0.005, 0.02, 0.05, and at confidence levels of 95 and 99 percent in
Table 8.1 and in Figure 8.2.
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TABLE 8.1 Credit VaR of an Uncorrelated Credit Portfolio

π = 0.005 π = 0.02 π = 0.05
Expected loss 5,000,000 20,000,000 50,000,000

n = 1
95 percent confidence level

Number of defaults 0 0 0
Proportion of defaults 0.000 0.000 0.000
Credit Value-at-Risk −5,000,000 −20,000,000 −50,000,000

99 percent confidence level
Number of defaults 0 1 1
Proportion of defaults 0.000 1.000 1.000
Credit Value-at-Risk −5,000,000 980,000,000 950,000,000

n = 50
95 percent confidence level

Number of defaults 1 3 5
Proportion of defaults 0.020 0.060 0.100
Credit Value-at-Risk 15,000,000 40,000,000 50,000,000

99 percent confidence level
Number of defaults 2 4 7
Proportion of defaults 0.040 0.080 0.140
Credit Value-at-Risk 35,000,000 60,000,000 90,000,000

n = 1000
95 percent confidence level

Number of defaults 9 28 62
Proportion of defaults 0.009 0.028 0.062
Credit Value-at-Risk 4,000,000 8,000,000 12,000,000

99 percent confidence level
Number of defaults 11 31 67
Proportion of defaults 0.011 0.031 0.067
Credit Value-at-Risk 6,000,000 11,000,000 17,000,000

What is happening as the portfolio becomes more granular, that is,
contains more independent credits, each of which is a smaller fraction of
the portfolio? The credit VaR is, naturally, higher for a higher probability
of default, given the portfolio size. But it decreases as the credit portfolio
becomes more granular for a given default probability. The convergence
is more drastic with a high default probability. But that has an important
converse: It is harder to reduce VaR by making the portfolio more granular,
if the default probability is low.

Eventually, for a credit portfolio containing a very large number of in-
dependent small positions, the probability converges to 100 percent that
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n=1, π= 0.020

n=50, π= 0.020

n=1000, π= 0.020
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n=1, π= 0.005

n=50, π= 0.005
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F IGURE 8.2 Distribution of Losses in an Uncorrelated Credit Portfolio
The graph displays the probability density of losses for each combination of a
number of equally sized credits and default probabilities. The initial future value of
the portfolio is $1,000,000,000. The values on the x-axis can be interpreted as the
fraction of credit losses or as the dollar value of loss in billions. The dashed grid line
marks the 99th percentile of loss. The solid grid line marks the expected loss and is
the same in each panel.

the credit loss will equal the expected loss. While the single-credit portfolio
experiences no loss with probability 1 − π and a total loss with probability
π , the granular portfolio experiences a loss of 100π percent “almost cer-
tainly.” The portfolio then has zero volatility of credit loss, and the credit
VaR is zero.

In the rest of this chapter, we show how models of portfolio credit risk
take default correlation into account, focusing on two models in particular:

1. The single-factor model, since it is a structural model, emphasizes the
correlation between the fundamental driver of default of different firms.
Default correlation in that model depends on how closely firms are tied
to the broader economy.

2. Intensity models emphasize the timing of defaults. Default correlation
depends on how many firms default within a given timeframe. It is driven
by how default simulation exercises are set up and parameterized.
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8.3 DEFAULT DISTRIBUTIONS AND CREDIT VAR
WITH THE SINGLE-FACTOR MODEL

In the example of the last section, we set default correlation only to the
extreme values of 0 and 1, and did not take account of idiosyncratic credit
risk. In the rest of this chapter, we permit default correlation to take values
anywhere on (0, 1). We took a first look at the single-factor model, along
with other structural credit models, in Chapter 6. The single-factor model
enables us to vary default correlation through the credit’s beta to the market
factor and lets idiosyncratic risk play a role.

8.3.1 Condit ional Defaul t D istr ibut ions

To use the single-factor model to measure portfolio credit risk, we start by
imagining a number of firms i = 1, 2, . . . , each with its own correlation βi to

the market factor, its own standard deviation of idiosyncratic risk
√

1 − β2
i ,

and its own idiosyncratic shock εi . Firm i’s return on assets is

ai = βim +
√

1 − β2
i εi i = 1, 2, . . .

As in Chapter 6, we assume that m and εi are standard normal variates,
and are not correlated with one another. We now in addition assume the εi

are not correlated with one another:

m ∼ N(0, 1)

εi ∼ N(0, 1) i = 1, 2, . . .

Cov[m, εi ] = 0 i = 1, 2, . . .

Cov[εi , ε j ] = 0 i, j = 1, 2, . . .

Under these assumptions, each ai is a standard normal variate. Since
both the market factor and the idiosyncratic shocks are assumed to have
unit variance, the beta of each credit i to the market factor is equal to βi .
The correlation between the asset returns of any pair of firms i and j is βiβ j :

E [ai ] = 0 i = 1, 2, . . .

Var[ai ] = β2
i + 1 − β2

i = 1 i = 1, 2, . . .

Cov[ai , a j ] = E
[(

βim +
√

1 − β2
i εi

) (
β jm +

√
1 − β2

j ε j

)]

= βiβ j i, j = 1, 2, . . .
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Just as in the single-credit version of the model, firm i defaults if ai ≤ ki ,
the logarithmic distance to the default asset value, measured in standard
deviations.

Example 8.3 (Correlation and Beta in Credit Single-Factor Model) Suppose
firm 1 is “cyclical” and has β1 = 0.5, while firm 2 is “defensive” and has
β2 = 0.1. The asset return correlation of the two firms is then β1β2 = 0.5 ×
0.1 = 0.05.

The single-factor model has a feature that makes it an especially handy
way to estimate portfolio credit risk: conditional independence, the prop-
erty that once a particular value of the market factor is realized, the asset
returns—and hence default risks—are independent of one another. Con-
ditional independence is a result of the model assumption that the firms’
returns are correlated only via their relationship to the market factor.

To see this, let m take on a particular value m̄. The distance to default—
the asset return—increases or decreases, and now has only one random
driver εi , the idiosyncratic shock:

ai − βi m̄ =
√

1 − β2
i εi i = 1, 2, . . .

The mean of the default distribution shifts for any βi > 0 when the market
factor takes on a specific value. The variance of the default distribution is

reduced from 1 to
√

1 − β2
i , even though the default threshold ki has not

changed. The change in the distribution that results from conditioning is
illustrated in Figure 8.3.

Example 8.4 (Default Probability and Default Threshold) Suppose a firm
has βi = 0.4 and ki = −2.33, it is a middling credit, but cyclical (relatively
high βi ). Its unconditional probability of default is �(−2.33) = 0.01. If
we enter a modest economic downturn, with m̄ = −1.0, the conditional
asset return distribution is N(−0.4,

√
1 − 0.402) or N(−0.4, 0.9165), and

the conditional default probability is found by computing the probability
that this distribution takes on the value −2.33. That probability is 1.78
percent.

If we were in a stable economy with m = 0, we would need a shock
of −2.33 standard deviations for the firm to die. But with the firm’s return
already 0.4 in the hole because of an economy-wide recession, it takes only
a 1.93 standard deviation additional shock to kill it.

Now suppose we have a more severe economic downturn, with m̄ =
−2.33. The firm’s conditional asset return distribution is N(−0.932, 0.9165)
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F IGURE 8.3 Default Probabilities in the Single-Factor Model
The graph assumes βi = 0.4, ki = −2.33(⇔ πi = 0.01), and m̄ = −2.33. The
unconditional default distribution is a standard normal distribution, while the

conditional default distribution is N(βi m̄,

√
1 − β2

i ) = N(−0.4, 0.9165).
Upper panel: Unconditional and conditional probability density of default. Note
that the mean as well as the volatility of the conditional distribution are lower.
Lower panel: Unconditional and conditional cumulative default distribution
function.

and the conditional default probability is 6.4 percent. A 0.93 standard de-
viation shock (εi ≤ −0.93) will now trigger default.

To summarize, specifying a realization m = m̄ does three things:

1. The conditional probability of default is greater or smaller than the
unconditional probability of default, unless either m̄ = 0 or βi = 0, that
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is, either the market factor shock happens to be zero, or the firm’s
returns are independent of the state of the economy.

There is also no longer an infinite number of combinations of market
and idiosyncratic shocks that would trigger a firm i default. Given m̄, a
realization of εi less than or equal to

ki − βi m̄ i = 1, 2, . . .

triggers default. This expression is linear and downward sloping in m̄:
As we let m̄ vary from high (strong economy) to low (weak economy)
values, a smaller (less negative) idiosyncratic shock will suffice to trigger
default.

2. The conditional variance of the default distribution is 1 − β2
i , so the

conditional variance is reduced from the unconditional variance of 1.
3. It makes the asset returns of different firms independent. The εi are

independent, so the conditional returns
√

1 − β2
i εi and

√
1 − β2

j ε j and

thus the default outcomes for two different firms i and j are independent.

Putting this all together, while the unconditional default distribution is a
standard normal, the conditional distribution can be represented as a normal

with a mean of −βi m̄ and a standard deviation of
√

1 − β2
i .

The conditional cumulative default probability function can now be
represented as a function of m:

p(m) = �

⎛
⎝ki − βim√

1 − β2
i

⎞
⎠ i = 1, 2, . . .

It is plotted in the lower panel of Figure 8.4 for different correlations.
This function is the standard normal distribution function of a random
variable that has been standardized in a specific way. The mean, or “number
of standard deviations,” is set to the new distance to default, given the
realization of the market factor, while the standard deviation itself is set

to its value
√

1 − β2
i under conditional independence. The intuition is that,

for a given value of the market factor, the probability of default depends
on how many standard deviations below its mean of 0 is the realization of
εi . The density function corresponding to the cumulative default function is
plotted in the upper panel of Figure 8.4.
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F IGURE 8.4 Single-Factor Default Probability Distribution
Probability of default of a single obligor, conditional on the realization of m
(x-axis). The default probability is set to 1 percent (k = −2.33), and the default
correlation is set to different values as specified by the plot labels.
Upper panel: Conditional default density function, that is, the density function
corresponding to p(m).
Lower panel: Conditional cumulative distribution function of default p(m).

8.3.2 Asset and Defaul t Correlat ion

We began earlier to discuss the difference between the asset return and the
default correlation. Let’s look for a moment at the relationship between the
two.
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F IGURE 8.5 Conditional Default Density Function in the Single-Factor Model
Both plots take β = 0.40. For a given correlation, the probability of default
changes the location of the default distribution, but not its variance.

In the single-factor model, the cumulative return distribution of any pair
of credits i and j is a bivariate standard normal with a correlation coefficient
equal to βiβ j :

(
ai

a j

)
∼ N

[(
0
0

) (
1 βiβ j

βiβ j 1

)]

Its cumulative distribution function is �
(ai

a j

)
. The probability of a joint de-

fault is then equal to the probability that the realized value is in the region
{−∞ ≤ ai ≤ ki , −∞ ≤ a j ≤ kj }:

�

(
ki

kj

)
= P

[−∞ ≤ ai ≤ ki ,−∞ ≤ a j ≤ kj
]

To get the default correlation for this model, we substitute πi j = �
(ki

kj

)
into Equation (8.1), the expression for the linear correlation:

ρi j =
�

(ki
kj

) − πiπ j√
πi (1 − πi )

√
π j (1 − π j )
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From here on, let’s assume that the parameters are the same for all
firms; that is, βi = β, ki = k, and πi = π, i = 1, 2, . . . The pairwise asset
return correlation for any two firms is then β2. The probability of a joint
default for any two firms for this model is

�

(
k
k

)
= P [−∞ ≤ a ≤ k, −∞ ≤ a ≤ k]

and the default correlation between any pair of firms is

ρ = �
(k

k

) − π2

π (1 − π )

Example 8.5 (Default Correlation and Beta) What β corresponds to a
“typical” low investment-grade default probability of 0.01 and a default
correlation of 0.05? We need to use a numerical procedure to find the
parameter β that solves

ρ = 0.05 = �
(k

k

) − π2

π (1 − π )

With π = 0.01, the results are β = 0.561, the asset correlation β2 = 0.315,
and a joint default probability of 0.0006, or 6 basis points. Similarly, starting
with β = 0.50 (β2 = 0.25), we find a joint default probability of 4.3 basis
points and a default correlation of 0.034.

8.3.3 Credit VaR Using the Sing le-Factor Model

In this section, we show how to use the single-factor model to estimate the
credit VaR of a “granular,” homogeneous portfolio. Let n represent the
number of firms in the portfolio, and assume n is a large number. We will
assume the loss given default is $1 for each of the n firms. Each credit is only
a small fraction of the portfolio and idiosyncratic risk is de minimis.

Condit ional Defaul t Probabi l i ty and Loss Level Recall that, for a given
realization of the market factor, the asset returns of the various credits are
independent standard normals. That, in turn, means that we can apply the
law of large numbers to the portfolio. For each level of the market factor, the
loss level x(m), that is, the fraction of the portfolio that defaults, converges
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to the conditional probability that a single credit defaults, given for any
credit by

p(m) = �

(
k − βm√
1 − β2

)
(8.2)

So we have

lim
N→∞

x(m) = p(m) ∀m ∈ R

The intuition is that, if we know the realization of the market factor return,
we know the level of losses realized. This in turn means that, given the
model’s two parameters, the default probability and correlation, portfolio
returns are driven by the market factor.

Uncondit ional Defaul t Probabi l i ty and Loss Level We are ultimately inter-
ested in the unconditional, not the conditional, distribution of credit losses.
The unconditional probability of a particular loss level is equal to the proba-
bility that the the market factor return that leads to that loss level is realized.
The procedure for finding the unconditional distribution is thus:

1. Treat the loss level as a random variable X with realizations x. We don’t
simulate x, but rather work through the model analytically for each value
of x between 0 (no loss) and 1 (total loss).

2. For each level of loss x, find the realization of the market factor at which,
for a single credit, default has a probability equal to the stated loss level.
The loss level and the market factor return are related by

x(m) = p(m) = �

(
k − βm√

1 − β2

)

So we can solve for m̄, the market factor return corresponding to a given
loss level x̄:

�−1(x̄) = k − βm̄√
1 − β2

or

m̄ = k −
√

1 − β2�−1(x̄)
β
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3. The probability of the loss level is equal to the probability of this market
factor return. But by assumption, the market factor is a standard normal:

P [X ≤ x̄] = �(m̄) = �

(
k −

√
1 − β2�−1(x̄)

β

)

4. Repeat this procedure for each loss level to obtain the probability distri-
bution of X.

Another way of describing this procedure is: Set a loss level/conditional
default probability x and solve the conditional cumulative default probabil-
ity function, Equation (8.2), for m̄ such that:

m̄ = k −
√

1 − β2�−1(x)
β

The loss distribution function is thus

P [X ≤ x] = �

(
k −

√
1 − β2�−1(x)

β

)

Example 8.6 (Loss Level and Market Level) A loss of 0.01 or worse occurs
when—converges to the event that—the argument of p(m) is at or below the
value such that p(m) = 0.01.

p(m̄) = 0.01 = �

(
k − βm̄√

1 − β2

)

The value m̄ at which this occurs is found by solving

�−1(0.01) ≈ −2.33 = p−1(m̄) = k − βm̄√
1 − β2

for m̄. This is nothing more than solving for the m̄ that gives you a specific
quantile of the standard normal distribution.

With a default probability π = 0.01 and correlation β2 = 0.502 = 0.25,
the solution is m̄ = −0.6233. The probability that the market factor ends
up at −0.6233 or less is �(−0.6233) = 0.2665.
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As simple as the model is, we have several parameters to work with:

� The probability of default π sets the unconditional expected value of
defaults in the portfolio.

� The correlation to the market β2 determines how spread out the defaults
are over the range of the market factor. When the correlation is high,
then, for any probability of default, defaults mount rapidly as business
conditions deteriorate. When the correlation is low, it takes an extremely
bad economic scenario to push the probability of default high.

To understand the impact of the correlation parameter, start with the
extreme cases:

� β → 1 (perfect correlation). Recall that we have constructed a portfolio
with no idiosyncratic risk. If the correlation to the market factor is close
to unity, there are two possible outcomes. Either m ≤ k, in which case
nearly all the credits default, and the loss rate is equal to 1, or m > k,
in which case almost none default, and the loss rate is equal to 0.

� β → 0 (zero correlation). If there is no statistical relationship to the
market factor, so idiosyncratic risk is nil, then the loss rate will very
likely be very close to the default probability p.

In less extreme cases, a higher correlation leads to a higher probability
of either very few or very many defaults, and a lower probability of inter-
mediate outcomes. This can be seen in Figure 8.6 in the cumulative loss
distribution and loss density functions, which converge to an L-shape. The
loss density converges to a ray over the default probability as the correlation
goes to zero, that is, the volatility goes to zero. Figure 8.7 compares loss
densities for a given correlation and different default probabilities.

8.4 USING SIMULATION AND COPULAS TO
ESTIMATE PORTFOLIO CREDIT RISK

The big problem with which portfolio credit risk models grapple is the
likelihood of joint default. The single-factor model introduces a latent factor
that drives joint default. Factor models make sense, because they link the
probability of joint default with our intuition that default is driven by the
state of the economy and perhaps an industry sector, that is common to all
or to a group of credits, as well as to a company’s unique situation.

An alternative approach is more agnostic about the fundamental forces
driving defaults. It relies on simulations, and ties the simulations together
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F IGURE 8.6 Distribution of Losses in the Single-Factor Model
Homogeneous and completely diversified portfolio; default probability
1.0 percent.
Upper panel: Density function of the loss rate. Note that the mean as well as the
volatility of the conditional distribution are lower.
Lower panel: Cumulative distribution function of the loss rate.

using a “light” modeling structure. This approach uses a particular mathe-
matical trick, the copula, to correlate defaults.

We assume in this section that we have a default time distribution for
each of the credits in the portfolio, either by risk-neutral estimation from
bond or CDS prices, or using ratings, or from a structural model. The rest
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F IGURE 8.7 Density Function of Portfolio Losses in the Single-Factor Model
β = 0.40.

of this chapter thus builds on Chapter 7, in which we defined the concept
of a default time distribution and showed how to estimate it from market
data. We will also assume that credit spreads, recovery rates, and risk-free
interest rates are deterministic, and focus on default risk.

8.4.1 Simulat ing Sing le-Credit R isk

To explain how this approach works, we first describe how to estimate the
default risk of a single credit via simulation. Simulation is not really necessary
to estimate single-credit risk, and we are going to describe a needlessly
complicated way to do so. We’re taking this trouble in order to build up to
portfolio credit risk estimation.

To see why simulation is not required, imagine we have a portfolio
consisting of a bond issued by a single-B credit with an estimated one-year
default probability of 0.05. The portfolio has a probability of 0.95 of being
worth a known future market value and a probability of 0.05 of being worth
only its recovery value in one year. If we assume that yield and credit curves
are flat (so that we do not roll up a curve as we move the maturity date
closer), the portfolio credit VaR at a confidence level of 0.95 or more is
equal to the recovery value less the expected loss.

Let’s begin by describing a simple technique for simulating default distri-
butions for a single credit. We use the cumulative default time distribution,
which we defined and derived from credit spread data in Chapter 7.
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F IGURE 8.8 Estimated Single-Credit Default Risk by Simulation
The graph shows the cumulative default time distribution for a credit with a
one-year default probability of 0.05. The hazard rate is 0.0513. The points
represent 20 simulated values of the uniform distribution.

Figure 8.8 illustrates the procedure using a default time distribution similar
to that illustrated in Figure 7.3. The points parallel to the y-axis represent
simulated values of the uniform distribution. For each of the uniform simu-
lations, we can find the default time with a probability equal to the uniform
variate. For example, the arrows trace one of the simulation threads, with
a value of about 0.6. The probability of a default within the next 18 years
or so is about 0.6. So that simulation thread leads to the simulated result of
default in about 18 years.

We can repeat this process for a large number of simulated uniform
variates. We will find that very close to 5 percent of our simulations lead
to default times of one year or less; we can get arbitrarily close to about
5 percent defaulting within one year by taking enough simulations. This
does not add anything to what we already knew, since the one-year 5 percent
default probability was our starting point.

Now we make the simulation procedure even more complicated by
transforming the cumulative default time distribution function. Up to now,
we’ve worked with a mapping from a future date or elapsed time to a
probability. We now transform it into a mapping from a future date to a
standard normal z value.

This procedure will seem to add needless complexity, but it is a crucial
part of applying copula techniques to measuring portfolio credit risk. It
enables us to use the joint normal distribution to simulate credit returns for
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F IGURE 8.9 Shifting from Uniform to Normal Distribution Simulations
Starting in the lower right panel, the graph traces how to change one thread of a
uniform simulation to a normal simulation. The lower right panel shows the
default time distribution for a single-B credit with a one-year default probability
of 5 percent.

portfolios containing more than one credit. The procedure is illustrated in
Figure 8.9 for our single-B credit with a one-year default probability of 0.05.

We can move from simulations of the uniform distribution to simula-
tions of the univariate normal distribution using the transformation princi-
ple, explained in Appendix A.5:

� We start with an arbitrary default time, say, 5.61 years. The probability
of a default over the next 5.61 years is 0.25, as illustrated in the lower
right panel of Figure 8.9.

� The second step is to find, in the upper left panel, the corresponding stan-
dard normal distribution value, −0.675. That is, �(−0.675) = 0.25.

� The final step closes the loop by mapping the normal distribution value
to the default time with a probability of 0.25. This step is illustrated in
the two right panels of Figure 8.9.

� The upper right panel displays the result, a function mapping from
default times to standard normal values.

8.4.2 Simulat ing Joint Defaul ts with a Copula

Next, we simulate joint defaults. To do so, we need a multivariate default
time distribution. But the default time distributions that we have are uni-
variate, covering one issuer at a time. We don’t have a statistical theory that
tells us how these distributions might be associated with one another.
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We could model default times as multivariate normal, a distribution
with which we are very familiar. The problem with that is that the marginal
distributions would then also be normal, and as different as can be from the
default time distributions we have been using. We would, for example, have
default times that are potentially negative. The problem would not be solved
by using an alternative to the normal, since the alternative distribution, too,
would have marginal distributions that bear no resemblance to our default
time distributions.

To summarize, the problem is this: We have a set of univariate de-
fault time distributions that we believe in, or are at least willing to stip-
ulate are realistic. But we do not know how to connect them with one
another to derive the behavior of portfolios of credits. On the other hand,
we are familiar with a few families of multivariate distributions, but none of
them have marginal distributions we feel are appropriate for the analysis of
default risk.

A now-standard solution to problems such as this is the use of copulas.
The great benefit of a copula for our purposes is that it permits us to separate
the issue of the default-time distribution of a single credit from the issue
of the dependence of default times for a portfolio of credits, that is, their
propensity or lack of propensity to default at the same time.

We can then combine the default-time distributions we believe in with
a distribution that makes talking about joint events easier, namely, the
multivariate normal distribution. One of the reasons the copula approach
has become so popular is that it exploits the familiarity of multivariate
normal distributions and the ease of simulation using them, without having
to accept a multivariate normal model of defaults.

We will spend a little time sketching the theory that justifies this ap-
proach, and then illustrate by continuing the example of the previous section.
Mathematically, a copula has these properties:

� It is a function c : {[0, 1]n} �→ [0, 1]. That is, it maps from the Cartesian
product of [0, 1], repeated n times, to [0, 1].

� It is therefore an n-dimensional distribution function; that is, it takes
as its argument n uniformly [0, 1] distributed random variables and
returns a probability.

� The marginal distributions are all uniformly distributed on [0, 1].

Formally, our problem is this: Suppose we have a portfolio with se-
curities of n issuers. We have estimated or specified single-issuer default-
time distributions F1(t1), . . . , Fn(tn). We do not know the joint distribu-
tion F (t1, . . . , tn). We can, however, somewhat arbitrarily specify a copula
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function c(F (t1, . . . , tn)), stipulating that

c(F1(t1), . . . , Fn(tn)) = F (t1, . . . , tn)

Since c(F1(t1), . . . , Fn(tn)) is a copula, its marginal distributions are the
single-issuer default-time distributions F1(t1), . . . , Fn(tn). For any multivari-
ate distribution, we can always find a copula.

Let’s reduce the level of generality and consider a portfolio consisting of
two credits, one single-B and one CCC-rated, each with a known/stipulated
hazard rate λB or λCCC. The default-time distribution functions are

F (tB) = 1 − eλBtB tB ∈ [0,∞)
F (tCCC) = 1 − eλCCCtCCC tCCC ∈ [0, ∞)

and we can use them to define corresponding uniform-[0, 1] random variates

uB = F (tB)
uCCC = F (tCCC)

as well as corresponding quantile functions

tB = F −1(uB) = − 1
λB

log(1 − uB) uB ∈ [0, 1]
tCCC = F −1(uCCC) = − 1

λCCC
log(1 − uCCC) uCCC ∈ [0, 1]

The transformation principle (see Appendix A.5) tells us that uB and
uCCC, which are ranges of distribution functions, are uniform-[0, 1]. In the
last section, we saw how to move back and forth between distribution and
quantile functions. We can do this in a multivariate context, too. We do not
know the joint default-time distribution function F (tB, tCCC). But by virtue
of being a distribution function,

F (tB, tCCC) = P
[
t̃B ≤ tB ∧ t̃CCC ≤ tCCC

]
= P

[
F −1(ũB) ≤ tB ∧ F −1(ũCCC) ≤ tCCC

]
= P [ũB ≤ F (tB) ∧ ũCCC ≤ F (tCCC)]
= P [ũB ≤ uB ∧ ũCCC ≤ uCCC]
= c(uB, uCCC)

The tildes identify the symbols representing the random times and their
probabilities. The first line follows from the definition of a distribution
function, while the last line follows from the copula theorem, known as
Sklar’s theorem, which tells us some copula must exist.
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So far, all we have done is define a type of mathematical object called a
copula and seen how it can be related to the “known” (or at least stipulated)
single-issuer default-time distributions F1(t1), . . . , Fn(tn) and the “unknown”
joint distribution F (t1, . . . , tn). How do we compute a credit VaR? There are
four steps:

1. Specify the copula function that we’ll use.
2. Simulate the default times.
3. Apply the default times to the portfolio to get the market values and

P&Ls in each scenario.
4. Add results to get portfolio distribution statistics.

So next we need to actually specify a copula. The most common
type or family of copulas is the normal copula. The user provides the
F1(t1), . . . , Fn(tn) and an estimate of a multivariate normal correlation ma-
trix 	.

In our bivariate example, the normal copula is

c(uB, uCCC) = �
(
�−1[F (tB)],�−1[F (tCCC]; 0, 	

)
= �

(
�−1(uB),�−1(uCCC); 0, 	

)

with

	 =
(

1 ρ

ρ 1

)

Once we have chosen this copula function and have set the parameter ρ,
we can use it to simulate joint defaults. Figure 8.10 illustrates the procedure
for our two-credit portfolio.

The starting point is a simulation of the joint standard normal distribu-
tion N(0, 	), as seen in the lower left panel of Figure 8.10. Each of these
pairs can be mapped to the standard normal quantile function to get the
pair

(�−1(z(i)
B ),�−1(z(i )

CCC)) i = 1, . . . , I

with I the number of simulations. Each of the latter is a pair in [0, 1]2.
Next, map the first element of each of these pairs to the single-B default

time that has the probability �−1
(

z( j)
B

)
and the second element of each of

these pairs to the CCC default time that has the probability �−1
(

z( j)
CCC

)
.
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F IGURE 8.10 Distribution of Losses in the Single-Factor Model
Estimate of credit VaR for a portfolio consisting of two credit-risky securities based
on 1,000 simulations.
Upper panel: Simulated default times. The simulation trials are partitioned and
marked as follows:

* trials leading to losses in the 0.01 quantile
◦ trials leading to losses in the 0.05 quantile, but smaller than the 0.01 quantile
� trials leading to losses in the 1-s.d. quantile, but smaller than the 0.05 quan-

tile
· trials leading to losses smaller than the 1-s.d. quantile

Lower panel: Histogram of loss levels. Each bar is labelled by the portfolio loss
realized in the number of simulation trials indicated on the y-axis.
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This step is illustrated by the arrows drawn from the lower left panel to the
upper left and lower right panels.

Each of these pairs is then plotted to the upper-right panel of Figure 8.10.
We now have our correlated joint default-time simulation.

Two features of this procedure seem arbitrary. First, we chose a normal
copula; there are alternatives. Second, how do we estimate or otherwise
assign the correlation parameter ρ, or in a more general context, the cor-
relation matrix? One answer is provided by the prices of credit derivatives
written on credit indexes, which we will study in the next chapter.

We next give a detailed example of the procedure for a portfolio consist-
ing of just two speculative-grade credits, each with a current notional and
market value of $1,000,000. As we saw above, for a two-credit portfolio, if
we have the default probabilities of each credit and their default correlation,
we can determine the entire credit distribution of the portfolio, so we are
carrying out this example for illustrative purposes. We imagine the credits
to have single-B and CCC ratings and assume:

p λ Notional Coupon Spread

CCC 0.10 0.1054 1,000,000 0.18 0.13
Single-B 0.05 0.0513 1,000,000 0.11 0.06

We assume a recovery rate of 40 percent. The horizon of the credit VaR is
one year.

There are four possible outcomes over the next year: no default, only
the single-B loan defaults, only the CCC loan defaults, and both default.
To keep things simple, we ignore the distinction between expected and
unexpected credit loss, assuming, in effect, that the lender does not set aside
any provision for credit losses. If there is a default, we assume the coupon
is not paid. The credit losses then consist of forgone principal and coupon,
mitigated by a recovery amount paid one year hence. The losses for each of
the four scenarios are:

Default time realization Terminal value Loss

No default (τB,i > 1, τCCC,i > 1) 2,290,000 0
Single-B default (τB,i ≤ 1, τCCC,i ) 1,580,000 710,000
CCC default (τB,i > 1, τCCC,i ≤ 1) 1,510,000 780,000
Both default (τB,i ≤ 1, τCCC,i ≤ 1) 800,000 1,490,000

To estimate the VaR, we first simulate correlated default times using
the normal copula. We apply a correlation of 0.25. Following the procedure
outlined above, the results are
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� We first generate 1,000 realizations of the bivariate standard normal
distribution using a correlation coefficient ρ = 0.25, giving us 1,000
pairs of real numbers.

� Each of these 2,000 real numbers is mapped to its standard univariate
normal quantile, giving us 1,000 pairs of numbers in (0, 1).

� The first element of each pair is mapped to the single-B default time
with that probability. The second element of each pair is mapped to the
CCC default time with that probability. We now have 1,000 pairs of
simulated default times (τB,i , τCCC,i ). These are illustrated in the upper
right panel of Figure 8.10.

� Each default time is either greater than, less than, or equal to the one-
year horizon of the credit VaR. We can accordingly assign a termi-
nal value to each loan in each simulation, sum across the two loans,
and subtract the sum from the no-default future value to get the loss.
There are four distinct possible values for each simulation trial. In
the upper panel of Figure 8.11, each trial is marked by its pair of
default times.

� Finally, we tally up the number of simulation trials resulting in each loss
level. This is displayed as a histogram in the lower panel of Figure 8.10.

The credit VaR estimates (in dollars) are:
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F IGURE 8.11 Simulating Multiple Defaults
Starting in the lower right panel, the graph traces how to change one thread of a
uniform simulation to a normal simulation. The lower right panel shows the
default time distribution for a single-B credit with a one-year default probability of
5 percent.
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Confidence level VaR

99 percent 1,490,000
95 percent 780,000
1 s.d. (84.135 percent) 710,000

Copulas are a very attractive modeling technique, since they permit the
model to generate quite detailed results—the entire probability distribution
of portfolio credit outcomes—with a very light theoretical apparatus and
requiring the estimation of only one additional parameter, the correlation,
beyond those used in single-credit modeling. However, the copula approach
also has a number of pitfalls. Most important among these is that the choice
of copula is arbitrary and that we simply do not know enough to reliably
estimate the copula correlation. It is difficult enough to estimate default
correlations, and the copula correlation is only related to, not identical to it.
Yet once a parameter value is assigned, the temptation to rely on the wide
range of model results that can then be generated is enormous. Reliance on
a poorly understood and hard-to-estimate parameter in a simplified model
is dangerous. This particular example was important in the subprime crisis.
We explore model risk further in Chapter 11.

Copula techniques are widely used in the valuation and risk management
of credit portfolios. The most frequent application, however, is in modeling
portfolio credit products, such as securitizations and credit index products.
We describe these in more detail in Chapter 9. Variants of the model let
default intensity vary over time stochastically, or correlate the intensities of
different firms with one another.

The models presented in this chapter focus on default, but ratings mi-
gration, of course, is also an important driver of credit risk. The Gaussian
single-factor approach can be applied in migration mode as well as de-
fault mode. In addition to a default probability and a corresponding default
threshold, the model requires a set of migration or transition probabili-
ties, for example those contained in the transition matrices described in
Chapter 6.

FURTHER READING

Lucas (1995) provides a definition of default correlation and an overview of
its role in credit models. See also Hull and White (2001).

Credit Suisse First Boston (2004) and Lehman Brothers (2003) are in-
troductions by practitioners. Zhou (2001) presents an approach to modeling
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correlated defaults based on the Merton firm value, rather than the factor-
model approach.

The application of the single-factor model to credit portfolios is laid
out in Finger (1999) and Vasicek (1991). Accessible introduction to copula
theory are Frees and Valdez (1998) and in Klugman, Panjer, and Willmot
(2008). The application to credit portfolio models and the equivalence to
Gaussian CreditMetrics is presented in Li (2000).

The correlated intensities approach to modeling credit portfolio risk, as
well as other alternatives to the Gaussian single-factor approach presented
here, are described in Schönbucher (2003), Chapter 10, and Lando (2004),
Chapter 5.


